a2 United States Patent

Cai et al.

US009229785B2

(10) Patent No.: US 9,229,785 B2
(45) Date of Patent: Jan. 5, 2016

(54) POLICY-BASED WORKLOAD
PERFORMANCE OPTIMIZATION FOR
DYNAMICALLY DISTRIBUTED OSGI
APPLICATION

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Min Cai, Shanghai (CN); Andrew G.
Hourselt, Seattle, WA (US); Ping Li,
Shanghai (CN); Hui Yang, Shanghai
(CN); Jia M. Zhang, Shanghai (CN)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 36 days.

(21) Appl. No.: 14/192,900

(22) Filed: Feb. 28, 2014

(65) Prior Publication Data
US 2014/0298332 Al Oct. 2, 2014

(30) Foreign Application Priority Data
Mar. 29,2013 (CN) .ccovvicicne 2013 1 0106657
(51) Imt.ClL
GO6F 9/455 (2006.01)
GO6F 9/50 (2006.01)
(52) US.CL
CPC i GO6F 9/5088 (2013.01)
(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,712,100 B2 5/2010 Fellenstein et al.

2005/0193119 Al* 9/2005 Hayes, Jr.cccoovivinnn. 709/227
2005/0210474 Al* 9/2005 Hayes, Jr.ccoovvivnnn 719/310
2009/0313615 Al 12/2009 Joshi et al.

2010/0191845 Al* 7/2010 Ginzton ..o 709/224

2011/0185064 Al 7/2011 Head et al.

2012/0023492 Al 1/2012 Govindan et al.

2012/0110164 Al 5/2012 Frey etal.

2012/0131173 Al* 5/2012 Ferrisetal. ... 709/224
2013/0326507 Al* 12/2013 McGrathetal. 718/1

OTHER PUBLICATIONS

Vu Duc Lam; Design and Implementation of concepts for supporting
component migration based on OSGI; Nov. 1, 2006-Apr. 30, 2007 .*
Tuukka Miettinen; Resource monitoring and visualization of OSGi-
based software components; 2008; VTT Publications 685.*

Cassier et al., “System Programmer’s Guide to: Workload Manager”,
ibm.com/redbooks, pp. 1-348, Fourth edition (Mar. 2008).

IBM, “IBM Workload Manager for z/OS The Power of Orchestra-
tion”, http://www-03.ibm.com/systems/z/os/zos/features/wlm/in-
dex.html, pp. 1-2, Accessed on Feb. 27, 2014.

Chinese Patent Application No. 201310106657.1, filed Mar. 29,
2013, entitled: “Method and System for Scheduling Execution of an
Application”, pp. 1-31.

* cited by examiner

Primary Examiner — Dong Kim
(74) Attorney, Agent, or Firm — Feb R. Cabrasawan; Arnold
B. Bangali

(57) ABSTRACT

A method for scheduling execution of an application is pro-
vided. The method comprises monitoring a usage state of
resources of a first virtual machine that executes the applica-
tion, so as to determine whether the usage state reaches a
predetermined state. The method further comprises migrating
an application module consuming the resources to a second
virtual machine having corresponding resources, if the usage
state reaches a predetermined state.

12 Claims, 8 Drawing Sheets

10

12~ coMpyTER SYSTEM SERVER

28
\

16

PROCESSING
UNIT

MEMORY

24 22
\ \

y T
‘ DISPLAY |———‘| INTERFAEE(S)|

NETWORK
ADAPTER

14

EXTERNAL
DEVICE®S)

US 9,229,785 B2

Sheet 1 of 8

Jan. 5, 2016

U.S. Patent

o1

($)391N30
S TEITE
\
144
H3Ldvay (S)ITYRALN]
OMLIN 0/l AdSI0
{ \ \
0c GG 24
81
=
=07 LINN
W INISS300Yd
—— (1
WIISAS \ \
194018 45 97
FE WY .
\
(115
RHOWIW
\
8¢ HINYIS WILSAS ¥ILNAW0I A

~3&I

US 9,229,785 B2

Sheet 2 of 8

Jan. 5, 2016

U.S. Patent

¢ IIAd

NY0MINYYA 13S0

~09

INIHIVIN TYNLYIA

INTHIYIN TYNLYIA

INTHIVIN TYNLYIA

TIN00N | [TInON

\ \
r9 &9

TIN00W | | 300K

\ \
é9 I9

NOILYIIddY 09

INTHIVIN TYNLYIA

Au b
IQ/

o -
lQ/

5T

\
Ig

U.S. Patent

Jan. 5, 2016 Sheet 3 of 8 US 9,229,785 B2

I START l

S301—

MONITORING A USAGE STATE OF RESOURCES OF A FIRST VIRTUAL MACHINE
EXECUTING THE APPLICATION, SO AS TO DETERMINE
WHETHER THE USAGE STATE REACHES A PREDETERMINED STATE

S302~

MIGRATING A MODULE CONSUMING THE RESOURCES IN THE APPLICATION
T0 A SECOND VIRTUAL MACHINE HAVING CORRESPONDING RESOURCES,
IN RESPONSE TO THE USAGE STATE REACHING THE PREDETERMINED STATE

END

FIG. 3

FROM S301

J

S$3021~

FINDING THE MODULE HAVING THE RESOURCE LABEL
INDICATING THE RESOURCES FROM THE PLURALITY OF MODULES

S$3022~{

MIGRATING THE FOUND MODULE TO THE SECOND VIRTUAL MACHINE

END

FIG. 4

US 9,229,785 B2

Sheet 4 of 8

Jan. 5, 2016

U.S. Patent

¢ OId

|
HYOMINYYL 13S0 1~08
m_h m_w
\ /
Y I
TINA0N TIN0ON
NOILY)INNWIOD NOILYINNNIOI
ety
5__2_0_ Siini| {7 3naon | 5__2_0_
79 &9
INIHOYW TYNLYIA INIHOYIW TYNLYIA Tnaon | [Tnaon
\ \
G9 I9
NOWLYIddY OZ NOLLYIddY 09
. . INHOVI THnLAIA INIHOYN THNLI
\ \ \ \
4% &9 44 IS

US 9,229,785 B2

Sheet 5 of 8

Jan. 5, 2016

U.S. Patent

_
_
0 Y _
T
|
_
T YUOMIWYY4 1950 L YYOMINYYA 1950
| e o
- O i
1913 T3S ! “ 1S | T9IAY3S
ONNASION' INIMINDAY o ONRALSIOZY' ONIMINGaY
[} 1
_ TIN00N | | 7100
OO0 | HOLYONIANOS |- - 55 “ s OKINTNGD || 000
f s | swieinody L v
_
3015 YIAY3S | 30IS INFITD
_
_

0S

US 9,229,785 B2

Sheet 6 of 8

Jan. 5, 2016

U.S. Patent

_
_
s |
S
T L
L
T NHOMINYYA 190 L YHOMINYYA 1950
S =
ERLEHL “ J9NIYd m “ ERLAHL » ERLEHL
INILYO0dY3, ONILSINDTY | I wz=momxu“ INILYOdII
| | 1
_ TINAON m “ TINCON
m_.._==o_>_ zo;mﬂ_u,__m_u,_%m__\,w__\,_ouull.v “__ -|m@;mm_w| “ IS zo_Eww__hﬂ_“_s_s_ou m_._==o_>_.
[.’ [INIYILSI93Y _ ONIMINDIY \. \
_
301S ¥IAYIS | 301S ININI
_
_

0S

US 9,229,785 B2

Sheet 7 of 8

Jan. 5, 2016

U.S. Patent

§ V1A

NY0MINYYA 13S0

~09

S6 S8 Sz $9
\ \ \ /
\ \ \ /
TINAON TINA0N TINAOW TINA0N
NOILYDINNWIWO) NOILYDINNIWIWO) NOILYIINNIIWO9 NOILYDINNIWIWO)
Y C Tonwiaw |] -.......... o .__.
e | T
5__2_.0_ 5__2_0_ simmni TINCON | 1 INCON |
£9 79 e
e« — L] _ |
5__2_”_ ST -+ TINGON | 5__2_”_
G9 19
NOILYITddY 06 NOILYOINddY OS NOILYOINddY OZ NOILYIIddY 09
INIHOYW TYNIAIA INIROYW WNLHIA INIRIYW WNLHIA INIHOYA YLHIA
\ \ \ \
1 45 &g GS IS

US 9,229,785 B2

Sheet 8 of 8

Jan. 5, 2016

U.S. Patent

"::::::._
| SNIvYYddy mA- _ | snIvdyddy SNIvYYddy
“ NOILYIYD ! NOILYY9IWN INIYOLINOW
e ___1 , .
[/ /
£06 G606 106
W31SAS INITNATHIS
\
006

US 9,229,785 B2

1
POLICY-BASED WORKLOAD
PERFORMANCE OPTIMIZATION FOR
DYNAMICALLY DISTRIBUTED OSGI
APPLICATION

CROSS REFERENCE

The present application claims the benefit of priority of
Chinese Patent Application Serial Number 201310106657.1,
titled “POLICY-BASED WORKLOAD PERFORMANCE
OPTIMIZATION FOR DYNAMICALLY DISTRIBUTED
OSGI APPLICATION” filed Mar. 29, 2013 with the State
Intellectual Property Office (SIPO) of the People’s Republic
of China, the contents of which are herein incorporated by
reference in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to virtual comput-
ing systems, and more specifically, to a method and system
for scheduling execution of an application including a plural-
ity of modules.

BACKGROUND

An Open Software Gateway initiative (OSGi) technique, a
core of which is an OSGi framework, has been developed in
a computer field. The OSGi framework is a modular system
and service platform for a Java programming language,
which is installed on an Operating System (OS) and realizes
acomplete and dynamic component model. The OSGi frame-
work has been widely used for establishing infrastructures for
enterprise-level applications because of its advantages of
being easy to be reused, low development complexity, and so
on.

A plurality of virtual machines, which form a cluster (or
called workload), can be deployed on the OSGi framework.
An OSGi application may be installed and executed on each
of' the virtual machines. The OSGi application comprises one
or more modules. Generally, an entire OSGi application is
deployed on one virtual machine, and when the application is
executed, respective modules of the application consume
resources of the virtual machine, e.g. CPU resources,
memory resources, disk resources, network resources and the
like, so as to perform corresponding functions.

With the development of the OSGi application (especially
the enterprise-level application), there are more and more
modules in the OSGi application, such that a size of the OSGi
application becomes larger. The OSGi application with an
over-large size not only has problems of starting and running
slowly, having unstable runtime, having difficulty in finding
errors and in deployment, and the like, but also may consume
resources of the virtual machine executing the application
significantly, so that the virtual machine is exhausted. At the
same time, although other virtual machines in the cluster to
which the virtual machine belongs have a lot of available
resources, the available resources are in an idle state because
these virtual machines do not execute applications. This ren-
ders that workloads of the respective virtual machines are
unbalanced.

SUMMARY

In one embodiment, a method for scheduling execution of
anapplication is provided. The method comprises monitoring
a usage state of resources of a first virtual machine that
executes the application, so as to determine whether the usage

15

25

35

40

45

50

60

2

state reaches a predetermined state. The method further com-
prises migrating an application module consuming the
resources to a second virtual machine having corresponding
resources, if the usage state reaches a predetermined state.

In another embodiment, a computer system for scheduling
execution of an application is provided. The computer system
comprises one or more processors, one or more computer-
readable memories, one or more computer-readable tangible
storage devices and program instructions which are stored on
at least one of the one or more storage devices for execution
by at least one of the one or more processors via at least one
of the one or more memories. The computer system further
comprises program instruction to monitor a usage state of
resources of a first virtual machine that executes the applica-
tion, so as to determine whether the usage state reaches a
predetermined state. The computer system further comprises
program instructions to migrate an application module con-
suming the resources to a second virtual machine having
corresponding resources, if the usage state reaches a prede-
termined state.

In yet another embodiment, a computer program product
for scheduling execution of an application is provided. The
computer program product comprises one or more computer-
readable tangible storage devices and program instructions
stored on at least one of the one or more storage devices. The
computer program product further comprises program
instruction to monitor a usage state of resources of a first
virtual machine that executes the application, so as to deter-
mine whether the usage state reaches a predetermined state.
The computer program product further comprises program
instructions to migrate an application module consuming the
resources to a second virtual machine having corresponding
resources, if the usage state reaches a predetermined state.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Through the more detailed description of some embodi-
ments of the present disclosure in the accompanying draw-
ings, the above and other objects, features and advantages of
the present disclosure will become more apparent, wherein
the same reference generally refer to the same components in
the embodiments of the present disclosure.

FIG. 1 shows a block diagram of an exemplary computer
system/server 12 which is applicable to implement the
embodiments of the present invention.

FIG. 2 shows an exemplary environment in which embodi-
ments of the present invention may be applied.

FIG. 3 is a flowchart illustrating a method for scheduling
execution of an application including a plurality of modules
according to an embodiment of the present invention.

FIG. 4 is a flowchart illustrating detailed operations of step
S302 shown in FIG. 3.

FIG. 5 is a schematic diagram illustrating an example
where a module of an application is migrated according to a
usage state of disk resources of a virtual machine.

FIG. 6 is a schematic diagram illustrating a process for
implementing communication among modules of applica-
tions distributed on different virtual machines through “ser-
vice registering”.

FIG. 7 is a schematic diagram illustrating a process for
implementing communication among modules of applica-
tions distributed on different virtual machines through “pack-
age exporting”.

FIG. 8 shows an example where respective modules shown
in FIG. 2 are migrated to different virtual machines.

US 9,229,785 B2

3

FIG. 9 is a block diagram illustrating a system for sched-
uling execution of an application including a plurality of
modules according to an embodiment of the present inven-
tion.

DETAILED DESCRIPTION

Some preferable embodiments will be described in more
detail with reference to the accompanying drawings, in which
the preferable embodiments of the present disclosure have
been illustrated. However, the present disclosure can be
implemented in various manners, and thus should not be
construed to be limited to the embodiments disclosed herein.
On the contrary, those embodiments are provided for the
thorough and complete understanding of the present disclo-
sure, and completely conveying the scope of the present dis-
closure to those skilled in the art.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device. Program code embodied on a computer
readable medium may be transmitted using any appropriate
medium, including but not limited to wireless, wireline, opti-
cal fiber cable, RF, etc., or any suitable combination of the
foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including

10

15

20

25

30

35

40

45

50

55

60

65

4

an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Referring now to FIG. 1, in which an exemplary computer
system/server 12 of computing environment 10, wherein
computer system/server 12 is applicable to implement the
embodiments of the present invention is shown. Computer
system/server 12 is only illustrative and is not intended to
suggest any limitation as to the scope of use or functionality
of embodiments of the invention described herein.

As shown in FIG. 1, computer system/server 12 is shown in
the form of a general-purpose computing device. The com-
ponents of computer system/server 12 may include, but are
not limited to, one or more processors or processing units 16,
asystem memory 28, and a bus 18 that couples various system
components including system memory 28 to processor 16.

Bus 18 represents one or more of any of several types ofbus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video

US 9,229,785 B2

5

Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
teny/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter systeny/server 12 to communicate with one or more
other computing devices. Such communication can occur via
Input/Output (I/O) interfaces 22. Still yet, computer system/
server 12 can communicate with one or more networks such
as a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components of computer system/server
12 via bus 18. It should be understood that although not
shown, other hardware and/or software components could be
used in conjunction with computer system/server 12.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc. A method and system for scheduling execution
of an application including a plurality of modules according
to embodiments of the present invention will be described
below with reference to drawings.

FIG. 2 shows an exemplary environment in which the
embodiments of the present invention may be applied. As
shown in FIG. 2, one or more virtual machines may be
deployed on an OSGi framework 50 installed in an Operating
System (OS, not shown). In FIG. 2, only four virtual
machines 51-54 are shown for simplicity. As described above,
each of the virtual machines may have a CPU, a memory(s)
and a virtual disk(s), and an OSGi application which may

10

15

20

25

30

35

40

45

50

55

60

65

6

comprise one or more modules may be installed and executed
in each of the virtual machines. As an example, in FIG. 2, an
OSGi application 60 is installed in a virtual machine 51 (that
is, a first virtual machine), and the application 60 comprises
four modules 61-64. It is to be appreciated that the numbers of
the virtual machines, the OSGi application(s) and the mod-
ules therein may be more or less than the numbers shown in
FIG. 2.

When the application 60 is executed in the virtual machine
51, the application 60 (specifically, the modules 61-64) uses
various resources in the virtual machine 51 to perform corre-
sponding functions. Hereinafter, CPU resources (computing
resources), memory resources and disk resources are taken as
examples of the resources in the virtual machine for conve-
nience of description. In the example shown in FIG. 2, it is
assumed that the various resources in the virtual machines
51-54 are as shown in Table 1 below.

TABLE 1
Virtual Number Size of Size of
Machine Architecture of CPU Memory Disk
51 x86__kvm 4 6 GB 72 GB
52 x86__kvm 2 2GB 640 GB
53 x86__kvm 8 4GB 36 GB
54 P_phyp 4 32GB 72 GB

At least one of the respective modules in the OSGi appli-
cation executed on the virtual machine 51 may be configured
with a resource label in advance. In an embodiment, the
resource label may indicate one or more types of resources to
be consumed by the module when the module is executed. For
example, if the module of the application would consume the
CPU resources and/or the memory resources when it is
executed, the module may be configured in advance with the
resource label indicating that the module would consume the
CPU resources and/or the memory resources when it is per-
formed. In another embodiment, the resource label may indi-
cate resources mainly consumed by the module among vari-
ous resources of the virtual machine. Particularly, the module
of the application may consume several types of resources
when it is executed, but amounts of these resources that it
consumes may be not always equal to each other. In this case,
the resource label may indicate one or more types of resources
consumed greatly by the module. For example, if the module
would consume many memory resources and a little CPU
resources when it is executed, that is, the module would
mainly consume the memory resources, the module may be
configured in advance with the resource label indicating that
the module would mainly consume the memory resources
when it is executed.

As a manner for configuring resource labels to the respec-
tive modules of the application in advance, the resource labels
may be added to the respective modules of the application by
a developer when he writes the application. It is also possible
to determine the resources to be consumed or mainly con-
sumed by the respective modules by analyzing source codes
of'the application before the application is executed, and add
corresponding resource labels.

Furthermore, a resource label may be added to a module in
many ways. In an implementation, a field indicating resources
to be consumed or mainly consumed by the module when it is
executed may be added into a configuration file of the module,
as the resource label. For example, if the module would con-
sume or mainly consume CPU resources, a field indicating
“CPU” may be added into the configuration file of the mod-
ule. If the module would consume or mainly consume

US 9,229,785 B2

7

memory resources, a field indicating “MEMORY” may be
added into the configuration file of the module. If the module
would consume or mainly consume disk resources, a field
indicating “DISK” may be added into the configuration file of
the module.

In another implementation, corresponding fields may be
set in the configuration file of the module for respective types
of resources of the virtual machine, and the respective fields
are given different values to indicate whether the module
would consume or mainly consume the resources corre-
sponding to the fields when it is executed. For example, if the
module would consume or mainly consume the resources
corresponding to the field when it is executed, a value of 1
may be given to the field as the resource label; otherwise, a
value of 0 may be given to the field. In the example shown in
FIG. 2, it is assumed that the module 61 mainly consumes the
CPU resources and the memory resources, the module 62
mainly consumes the CPU resources, the module 63 mainly
consumes the memory resources and the disk resources, and
the module 64 mainly consumes the disk resources, and that
corresponding fields “CPU-Consumptionlndex”, “Memory-
Consumptionlndex” and “DISK-Consumptionlndex” are set
for the CPU resources, the memory resources and the disk

resources of the virtual machine in the configuration files)

“Manifest.mf of the respective modules, then the values of
the respective fields set in the configuration files of the mod-
ules 61-64 are as shown in Table 2 below.

TABLE 2
CPU- Memory- Disk-
Consumption Consumption Consumption
Module Description Index Index Index
61 Consuming CPU 1 1 0
resources and
memory
resources mainly
62 Consuming CPU 1 0 0
resources mainly
63 Consuming memory 0 1 1
resources mainly
64 Consuming disk 0 0 1

resources mainly

In this case, related part in the configuration file “Mani-
fest.mf” of the module 61 is shown in code segment 1 below,
for example.

Code segment 1]

Manifest-Version: 1.0

Module-ManifestVersion: 2

Module-Name: System Plug-in

CPU-Consumptionlndex: 1

Memory-ConsumptionIndex: 1

Disk-Consumptionlndex: 0

A method for scheduling execution of an application
including a plurality of modules according to an embodiment
of the present invention is described in detail below with
reference to FIG. 3 in conjunction with the example shown in
FIG. 2. As shown in FIG. 3, in step S301, a usage state of
resources of a first virtual machine executing the application
is monitored, so as to determine whether the usage state
reaches a predetermined state. In the example shown in FIG.
2, the first virtual machine is the virtual machine 51. As
described above, respective modules of the application con-
sume resources of the virtual machine 51 when the applica-
tion is executed on the virtual machine 51. As the execution of
the application, one or more types of resources of the virtual
machine 51 may be consumed significantly and even be going

8

to be exhausted. In the embodiment, a state where the
resources are consumed significantly or are going to
exhausted may be used as the predetermined state, therefore
in step S301, the usage state of the resources of the virtual
machine 51 is monitored so as to determine whether the
resources are consumed significantly or are going to be
exhausted. In another embodiment, the predetermined state
may be any other state selected depending on design require-
ments, such as a state where the resources are not used sig-
nificantly.

The usage state of the resources may be represented by a
utilization rate thereof, and in this case, the predetermined
state may be a state where the utilization rate of the resources
exceeds a utilization rate threshold. The utilization rate

5 threshold may be set flexibly depending on actual require-

30

35

40

45

50

55

65

ments. For example, the utilization rate threshold may be set
to 90%, so that it is determined that the resources are con-
sumed significantly or are going to be exhausted, that is, the
usage state of the resources reaches the predetermined state,
when the utilization rate of the resources reaches or exceeds
90%. In the example shown in FIG. 2, assuming that the
utilization rate of the disk resources of the virtual machine 51
is found to exceed the utilization rate threshold by the moni-
toring operation, thus it is determined that the usage state of
the disk resources reaches the predetermined state. Besides
the utilization rate, other indexes may be used to indicate the
usage state of the resources. For example, the usage state of
the resources may be represented by its usage amount, and in
this case, the predetermined state is a state where the usage
amount of the resources exceeds a usage amount threshold.
For example, the usage state of the disk resources reaches the
predetermined state when the usage amount of the disk
resources exceeds a usage amount threshold of “200 GB”.

All resources or one or more of the all resources of the
virtual machine may be monitored, and it may be determined
whether the usage state of any of the resources reaches the
predetermined state. In existing Operating Systems, program
components capable of monitoring usage states (for example,
utilization rates, usage amounts, etc) of various resources of a
computer (virtual machine) have been provided, and may be
used to perform the monitoring operation in step S301.

Returning to FIG. 3, in step S302, a module consuming the
resources in the application is migrated to a second virtual
machine having corresponding resources, in response to the
usage state of the resources reaching the predetermined state.
As described above, the “corresponding resources” that the
second virtual machine has here refer to resources which are
a same type as the resources of the first virtual machine.

As described above, when the usage state of the resources
reaches the predetermined state, a workload of the first virtual
machine is heavy, and thus needs to be reduced. In the
embodiment of the present invention, the module consuming
the resources may be found from a plurality of modules of the
application, and then migrated to the second virtual machine,
so that the module is executed on the second virtual machine
instead of the first virtual machine. Thus, a part of the work-
load of the first virtual machine is transferred to the second
virtual machine, which realizes a balance of the workloads
between the two virtual machines.

Detailed operations of the migrating step S302 will be
described with reference to FIG. 4.

As shown in FIG. 4, in step S3021, the module consuming
the resources in the application executed on the first virtual
machine is found as the module to be migrated, in response to
the usage state of the resources reaching the predetermined
state. Specifically, since the respective modules in the appli-
cation are configured with the resource labels described

US 9,229,785 B2

9

above in advance, the module having the resource label indi-
cating the resources may be found from the respective mod-
ules, as the module to be migrated. The resource labels of the
modules may be found by searching the configuration files of
the respective modules. It is to be noted that, when there are a
plurality of modules consuming the resources in the applica-
tion, a part or all of these modules may be used as the modules
to be migrated, or one of these modules (for example, the
module which consumes the resources most) may be used as
the module to be migrated. In the example shown in FIG. 2, in
response to the usage state of the disk resources reaching the
predetermined state, a configuration file having a resource
label of “Disk-Consumptionlndex=1" is searched for in the
configuration files of the modules 61-64, so that the modules
63 and 64 are found, then one module (e.g. module 64) is
selected from the two modules as the module to be migrated
according to a criterion predetermined by a user or a devel-
oper.

Next, in step S3022, the found module is migrated to the
second virtual machine having the corresponding resource.
The second virtual machine having the corresponding
resources may be a virtual machine having the most corre-
sponding resources, which is selected from the plurality of
virtual machines. For example, a virtual machine having the
corresponding resources may be selected from the plurality of
virtual machines which have existed, as the second virtual
machine, i.e. a migration destination. The second virtual
machine may be selected in many manners. For example,
when one or more of the plurality of virtual machines have the
corresponding resources, any one of the virtual machines may
be selected as the second virtual machine, and preferably the
virtual machine having the most corresponding resources is
selected as the second resource. In the example shown in FIG.
2, when the usage state of the disk resources reaches the
predetermined state, the virtual machine 52 is selected as the
second virtual machine because it has the most disk resources
(640 G). Alternatively, the second virtual machine having the
corresponding resources may be a virtual machine having the
corresponding resources, which is newly generated in
response to the usage state of the resources reaching the
predetermined state. Particularly, when it is determined that
the usage state of the resources of the first virtual machine
reaches the predetermined state in step S301, a virtual
machine having the corresponding resources may be gener-
ated newly, and deployed on the OSGi framework 50 as a new
member of the cluster. The method for generating the virtual
machine is well known in the art, thus a detailed description
thereof is omitted herein.

The found module may be migrated onto the second virtual
machine by various software/module migration methods well
known in the art. For example, firstly, a new application is
generated on the second virtual machine by copying an infra-
structure of the OSGi application executed on the first virtual
machine to the second virtual machine, the infrastructure
including, for example, various system modules required for
starting the application and the like. Then, the module to be
migrated is analyzed to determine dependent items in the
application which are required for running of the module,
such as other associated modules supporting the running of
the module, related configuration information, and the like.
Finally, the module is migrated to the second virtual machine
together with the respective dependent items (if any), as the
module in the application generated on the second virtual
machine. In the example shown in FIG. 2, the module 64 may
be migrated to the virtual machine 52 which is the second
virtual machine. FIG. 5 schematically shows a state after the
module 64 is migrated, wherein applications 70, 80, 90,

5

10

15

20

25

30

35

40

45

50

55

60

65

10

including the migrated module 64, 62, 63, respectively, and
dependent items of the module (not shown) is newly gener-
ated on the virtual machine 52, 53, 54, respectively.

Through the above migrating operation, a stand-alone
application originally executed on one virtual machine may
be converted into distributed applications executed on differ-
ent virtual machines. It is to be noted that, before the above
migrating operation is performed, the respective modules of
the application executed on the first virtual machine commu-
nicate with other modules as required to exchange informa-
tion such as data and commands. After the above migrating
operation is performed, the communication among these
modules should be maintained so as to ensure that the respec-
tive modules distributed on the first and the second virtual
machines can run normally. The communication between the
remaining modules of the application executed on the first
virtual machine and the modules migrated to the second vir-
tual machine may be maintained in many manners. In an
implementation, after the migrating operation is completed,
the respective modules on the first virtual machine may be
informed of address information of the modules migrated to
the second virtual machine, so that the respective modules on
the first virtual machine may find the modules on the second
virtual machine according to the address information and
communicate with them; on the other hand, address informa-
tion of the respective modules on the first virtual machine
may be added into the configuration files of the modules
migrated to the second virtual machine, so that the modules
migrated to the second virtual machine may find the respec-
tive modules on the first virtual machine according to the
address information and communicate with them. In another
implementation, a first communication module and a second
communication module may be created on the first virtual
machine and the second virtual machine, respectively, so that
the modules of the application executed on the first virtual
machine and the modules migrated to the second virtual
machine may communicate with each other through the first
communication module and the second communication mod-
ule. Existing module creation tools may be used to create the
communication modules, and a description thereof'is omitted
herein. In such implementation, it is not necessary to modify
codes of the respective modules, and the modules of the
application executed on the first virtual machine and the
modules migrated to the second virtual machine may com-
municate with each other seamlessly as in the stand-alone
application without performing the migrating operation. This
implementation will be described in connection with the
example shown in FIG. 2.

In the example shown in FIG. 2, the first communication
module 65 and the second communication module 75, third
communication module 85, and forth communication module
95, which are included in the applications 60, 70, 80, and 90,
respectively, are created on the first virtual machine 51 and
the second virtual machine 52, respectively, and the modules
61-63 and the module 64 communicate with each other
through the two communication modules. The first commu-
nication module 65 and the second communication module
75 located on different virtual machines may follow an exist-
ing OSGi remote service specification to communicate with
each other. The OSGi remote service specification defines
two mature schemes, that is, a R-OSGi (Remote-OSGi)
scheme and a D-OSGi (Distributed-OSGi) scheme, and any
one of the two schemes may be used to perform the commu-
nication.

An exemplary method for the first communication module
65 and the second communication module 75 to implement
the communication between the modules by using the

US 9,229,785 B2

11
R-OSGi scheme will be described below. There are two
implementations for the R-OSGi scheme, that is, a “register
service” implementation and a “package exporting” imple-
mentation. Since these two implementations are well known
in the art, only brief descriptions thereof are given herein.

FIG. 6 schematically shows a process for implementing
communication among the modules of the applications dis-
tributed on different virtual machines through the “service
registering” R-OSGi scheme. For simplicity, those parts hav-
ing nothing to do with the communication process are not
shown in FIG. 6. Furthermore, it is assumed that the scenario
to which FIG. 6 is directed at is a scenario where the module
61 of the application 60 executed on the first virtual machine
51 needs to access the module 64 of the application 70
executed on the second virtual machine, and in this case, the
module 61 and the first communication module 65 function as
the modules at a client side, while the module 64 and the
second communication module 75 functions as the modules
at a server side. Moreover, for convenience of illustration, the
OSGi framework 50 is shown as two parts in FIG. 6, although
the two parts may actually be a whole in the context of the
present invention.

As shown in FIG. 6, the module 64 registers a service
which it can provide for other modules with the OSGi frame-
work 50 at the server side. Then, the second communication
module 75 acquires the service from the OSGi framework 50,
and registers the service with the operating system (OS). For
example, the second communication module 75 may register
the service with a 9278 port of the operation system. At the
client side, when the module 61 needs to access the module
64, the first communication module 65 calls the 9278 port of
the operating system so as to acquire the service that the
module 64 can provide, and then registers the service with the
OSGi framework 50. Subsequently, the module 61 may take
out from the OSGi framework 50 the service registered with
the OSGi framework 50 by the first communication module
65, so that it may acquire and use the service provided by the
module 64. Thus, the module 61 and the module 64 may
communicate with each other simply by accessing the OSGi
framework 50, and they even can be unaware of the presence
of the first communication module and the second commu-
nication module.

FIG. 7 schematically shows a process for implementing
communication among the modules of the applications dis-
tributed on different virtual machines through the “package
exporting” R-OSGi scheme. The scenario to which FIG. 7 is
directed is the same as FIG. 6. Likewise, those parts having
nothing to do with the communication process are not shown
in FIG. 7.

As shown in FIG. 7, the module 64 exports its source codes
(including various classes defined and the like) as a package
to the OSGi framework 50 at the server side. The second
communication module 75 detects and imports the package
exported by the module 64 in the OSGi framework 50. Then,
the second communication module 75 generates an interface
(I/F) 76 for accessing the imported package, which is regis-
tered with the operating system (OS) as a service. For
example, the interface 76 may be registered with the 9278
port of the operating system. At the client side, when the
module 61 needs to access the module 64, the first commu-
nication module 65 calls the 9278 port of the operating system
s0 as to acquire via the interface 76 the service (package)
provided by the module 64, and exports the package to the
OSGi framework 50. Subsequently, the module 61 imports
the package from the OSGi framework 50, thereby acquiring
and using the service provided by the module 64. Thus, the

10

15

20

25

30

35

40

45

50

55

60

65

12

module 61 and the module 64 may communicate with each
other through the first communication module and the second
communication module.

The communication process for the module 61 to access
the module 64 has been described above. It is to be appreci-
ated that a substantially same communication process may be
performed when the module 64 accesses the module 61, and
at this time, what is needed to do is only making the module
61 and the first communication module 65 serve as the mod-
ules at the server side and making the module 64 and the
second communication module 75 serve as the modules atthe
client side.

With the above communication method, especially the
method for creating the first communication module and the
second communication module on the first virtual machine
and the second virtual machine respectively to maintain the
communication among the modules, the respective modules
of'the application executed on the first virtual machine and the
modules migrated to the second virtual machine may com-
municate with each other seamlessly in a manner used before
the migration, and they even do not need to know the change
in the architecture caused by the migrating operation. Thus,
even if the modules in the application executed on the first
virtual machine are migrated to the second virtual machine,
normal execution of these modules would not be affected.
During the execution of the application on the first virtual
machine, the usage states of various resources of the first
virtual machine may be monitored continuously, and the
migrating operation described above may be performed when
necessary, so that the execution of the application may be
scheduled dynamically, and thus the workload of the first
virtual machine may be reduced. In the example shown in
FIG. 2, assume that as time lapses, a case where the usage
state of the CPU resources reaches the predetermined state
and a case where the usage state of the memory resources
reaches the predetermined state occur, and in response to this,
the modules 62 and 63 are migrated to the virtual machines 63
and 64, respectively, as shown in FIG. 8. Thus, the workload
of the first virtual machine is transferred to other virtual
machines by the method according to the embodiment of the
present invention, thereby the workload thereof is reduced.

Additionally, the above method according to the embodi-
ment of the present invention may be applied to each of the
virtual machines in the cluster, so as to schedule the execution
of the application on each of the virtual machines dynami-
cally. Thus, the workload may be distributed among the
respective virtual machines dynamically, so that an equaliza-
tion of the workload may be realized.

A system for scheduling execution of an application
including a plurality of modules according to an embodiment
of the present invention will be described below with refer-
ence to FIG. 9. The system may perform the method
described above, and may be used in the environment shown
in FIG. 2. To avoid repetition, descriptions which are the same
as those given above are omitted below. As shown in FIG. 9,
the system 900 for scheduling execution of an application
comprises a monitor apparatus 901 and a migration apparatus
902. In some embodiments, the system 900 may further com-
prise a creation apparatus 903 as described later. The moni-
toring apparatus 901 monitors a usage state of resources of a
first virtual machine executing the application, so as to deter-
mine whether the usage state reaches a predetermined state.

In the example shown in FIG. 2, the first virtual machine
may be the virtual machine 51. As described above, a state
where the resources are consumed significantly or are going
to be exhausted may be used as the predetermined state,
therefore the monitoring apparatus 901 may monitor the

US 9,229,785 B2

13

usage state of the resources of the virtual machine 51 so as to
determine whether the resources are consumed significantly
or are going to be exhausted. Of course the predetermined
state is not limited to the state where the resources are con-
sumed significantly or are going to be exhausted, and may be
any other state selected depending on design requirements.
The usage state of the resources may be represented by its
utilization rate, and in this case, the predetermined state is a
state where the utilization rate of the resources exceeds a
utilization rate threshold. The utilization rate threshold may
be set flexibly depending on actual requirements. Besides the
utilization rate, the usage state of the resources may be rep-
resented by other indexes (for example, a usage amount, etc).

The monitoring apparatus 901 may monitor all resources
or one or more of the all resources of the first virtual machine,
and determine whether a usage state of any one of the
resources reaches the predetermined state. The monitoring
apparatus 901 may utilize program components, which are
provided in existing operating systems and can be used to
monitor usage states of various resources in a computer (vir-
tual machine), to perform the monitoring operation. The
migration apparatus 902 migrates a module consuming the
resources in the application to a second virtual machine hav-
ing corresponding resources, in response to the usage state
reaching the predetermined state. Particularly, the migration
apparatus 902 may find the module consuming the resources
in the application as the module to be migrated, in response to
the usage state of the resources reaching the predetermined
state. Since at least one of the respective modules of the
application executed on the first virtual machine may be
configured with the above resource label in advance, the
migration apparatus 902 may find the module having the
resource label indicating the resources from the respective
modules, as the module to be migrated. It is to be noted that,
when there are a plurality of modules consuming the
resources in the application, the migration apparatus 902 may
use a part or all of these modules as the modules to be
migrated, or use one of these modules (for example, the
module which consumes the resources most) as the module to
be migrated. Then, the migration apparatus 902 may migrate
the found module to the second virtual machine having the
corresponding resources. As described above, the second vir-
tual machine having the corresponding resources may be a
virtual machine having the most corresponding resources,
which is selected from the plurality of virtual machines, or
may be a virtual machine having the corresponding resources,
which is newly generated in response to the usage state of the
resources reaching the predetermined state. The method used
by the migration apparatus 902 to determine the second vir-
tual machine and migrate the module is same as that described
above with respect to FIG. 3, and a detailed description
thereof is omitted herein.

By performing the migrating operation in the above man-
ner, the system 900 may convert a stand-alone application
originally executed on one virtual machine into distributed
applications executed on different virtual machines. As
described above, after the above migrating operation is per-
formed, communication among the respective modules dis-
tributed on the first and the second virtual machines should be
maintained so as to ensure that the modules can run normally.
The communication between the remaining modules of the
application executed on the first virtual machine and the
modules migrated to the second virtual machine may be
maintained in many manners. In an implementation, the
migration apparatus 902 may inform the respective modules
on the first virtual machine of address information of the
modules migrated to the second virtual machine after the

10

15

20

25

30

35

40

45

50

55

60

65

14

migrating operation is completed, so that the respective mod-
ules on the first virtual machine may find the modules on the
second virtual machine according to the address information
and communicate with them; on the other hand, the migration
apparatus 902 may add address information of the respective
modules on the first virtual machine into the configuration
files of the modules migrated to the second virtual machine,
so that the modules migrated to the second virtual machine
may find the respective modules on the first virtual machine
according to the address information and communicate with
them. In another implementation, the creation apparatus 903
may be provided in the system 900. The creation apparatus
903 may create a first communication module and a second
communication module on the first virtual machine and the
second virtual machine, respectively, so that the modules of
the application executed on the first virtual machine and the
modules migrated to the second virtual machine may com-
municate with each other through the first communication
module and the second communication module. The creation
apparatus 903 may use existing module creation tools to
create the communication modules, and a detailed descrip-
tion thereof is omitted herein. The first communication mod-
ule and the second communication module may operate in the
manner described above, so that the respective modules of the
application executed on the first virtual machine and the
modules migrated to the second virtual machine may com-
municate seamlessly in a manner used before migration,
without necessity of knowing changes in the architecture
caused by the migrating operation. Thus, even if the modules
of the application executed on the first virtual machine are
migrated to the second virtual machine, normal execution of
these modules would not be affected. In this implementation,
the system 900 does not need to modify codes of the respec-
tive modules in the application, and thus has a wider applica-
tion scope.

During the execution of the application on the first virtual
machine, the monitoring apparatus 901 may monitor the
usage states of various resources of the first virtual machine
continuously, and inform the migration apparatus 902 to per-
form the above migrating operation when necessary, so that
the execution of the application is scheduled dynamically.
Thus, with the method according to the embodiment of the
present invention, the workload of the first virtual machine is
transferred to other virtual machines dynamically, which
reduces the workload of the first virtual machine. Addition-
ally, the system 900 may perform the above operations on
each of the virtual machines in the cluster, so as to schedule
execution of an application on each of the virtual machines
dynamically, thereby equalize workloads of the respective
virtual machines dynamically. In this way, a throughput of the
cluster may be improved and its performance may be opti-
mized. The method and system for scheduling execution of an
application including a plurality of modules according to the
embodiments of the present invention have been described
above in the context of OSGi application. It is to be appreci-
ated that this is only illustrative, not limitative. In fact, besides
the OSGi application, the method and system according to the
embodiments of the present invention may be applied to other
types of applications running in a modular (module) manner.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should

US 9,229,785 B2

15

also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions. The descriptions of the vari-
ous embodiments of the present invention have been pre-
sented for purposes of illustration, but are not intended to be
exhaustive or limited to the embodiments disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the described embodiments. The terminology used
herein was chosen to best explain the principles of the
embodiments, the practical application or technical improve-
ment over technologies found in the marketplace, or to enable
others of ordinary skill in the art to understand the embodi-
ments disclosed herein.
What is claimed is:
1. A method for scheduling execution of an application, the
method comprising steps of:
monitoring resource usage of plurality of application mod-
ules executing within the application, wherein the
resource usage indicates one or more types of resources
the plurality of application modules are consuming;
determining a resource label for each of the plurality of
application modules, wherein the resource label com-
prises an application module name, a description of the
application module which indicates a resource from the
one or more types of resources that is mainly consumed,
and a consumption index for the one or more types of
resources;
monitoring a first virtual machine from plurality of virtual
machines that executes the application comprising the
plurality of application modules to determine if the
resource usage by any of the plurality of application
modules reaches a predetermined state, wherein if two
or more application modules reach the predetermined
state, an application module with the most resource
usage and with the description of the application module
indicating the resource as the mainly consumed resource
is selected for migration;
selecting a second virtual machine, from the plurality of
virtual machines, that has the indicated resource avail-
able, wherein the second virtual machine is selected
using the description of the selected application module;
migrating the selected application module to a second
application of the selected second virtual machine from
the plurality of virtual machines, wherein the applica-
tion and the second application are related applications;
and
creating a first communication module and a second com-
munication module on the application of the first virtual
machine and the second application of the second virtual
machine, respectively, so that the plurality of modules,
including the migrated modules executing within the
application and the second application utilizes the first
and second communication modules to communicate.
2. The method of claim 1, wherein the usage of the
resources is represented by a utilization rate thereof, and the
predetermined state is a state that indicates the utilization rate
of the resources exceeds a utilization rate threshold.

20

25

30

40

45

50

16

3. The method of claim 1, wherein the second virtual
machine having the indicated resources available is a virtual
machine having the most indicated resources available,
which is selected from a plurality of virtual machines.
4. The method of claim 1, wherein the second virtual
machine having the indicated resources available is a virtual
machine having the indicated resources available, which is
generated in response to the an event that the resource usage
by any of the plurality of application modules reaches a
predetermined state.
5. A computer system for scheduling execution of an appli-
cation, the computer system comprising:
one or more processors, one or more computer-readable
memories, one or more computer-readable tangible stor-
age devices and program instructions which are stored
on at least one of the one or more storage devices for
execution by at least one of the one or more processors
via at least one of the one or more memories, the pro-
gram instructions comprising steps of:
monitoring resource usage of plurality of application mod-
ules executing within the application, wherein the
resource usage indicates one or more types of resources
the plurality of application modules are consuming;

determining a resource label for each of the plurality of
application modules, wherein the resource label com-
prises an application module name, a description of the
application module which indicates a resource from the
one or more types of resources that is mainly consumed,
and a consumption index for the one or more types of
resources;
monitoring a first virtual machine from plurality of virtual
machines that executes the application comprising the
plurality of application modules to determine if the
resource usage by any of the plurality of application
modules reaches a predetermined state, wherein if two
or more application modules reach the predetermined
state, an application module with the most resource
usage and with the description of the application module
indicating the resource as the mainly consumed resource
is selected for migration;
selecting a second virtual machine, from the plurality of
virtual machines, that has the indicated resource avail-
able, wherein the second virtual machine is selected
using the description of the selected application module;

migrating the selected application module to a second
application of the selected second virtual machine from
the plurality of virtual machines, wherein the applica-
tion and the second application are related applications;
and

creating a first communication module and a second com-

munication module on the application of the first virtual
machine and the second application of the second virtual
machine, respectively, so that the plurality of modules,
including the migrated modules executing within the
application and the second application utilizes the first
and second communication modules to communicate.

6. The computer system of claim 5, wherein the usage of
the resources is represented by a utilization rate thereof, and
the predetermined state is a state that indicates the utilization
rate of the resources exceeds a utilization rate threshold.

7. The computer system of claim 5, wherein the second
virtual machine having the indicated resources available is a
virtual machine having the most indicated resources avail-
able, which is selected from a plurality of virtual machines.

8. The computer system of claim 5, wherein the second
virtual machine having the indicated resources available is a
virtual machine having the indicated resources available,

US 9,229,785 B2

17

which is generated in response to the an event that the
resource usage by any of the plurality of application modules
reaches a predetermined state.
9. A computer program product for scheduling execution
of'an application, the computer program product comprising:
one or more computer-readable tangible non-transitory
storage devices and program instructions stored on at
least one of the one or more storage devices, the program
instructions comprising steps of:
monitoring resource usage of plurality of application mod-
ules executing within the application, wherein the
resource usage indicates one or more types of resources
the plurality of application modules are consuming;
determining a resource label for each of the plurality of
application modules, wherein the resource label com-
prises an application module name, a description of the
application module which indicates a resource from the
one or more types of resources that is mainly consumed,
and a consumption index for the one or more types of
resources;
monitoring a first virtual machine from plurality of virtual
machines that executes the application comprising the
plurality of application modules to determine if the
resource usage by any of the plurality of application
modules reaches a predetermined state, wherein if two
or more application modules reach the predetermined
state, an application module with the most resource
usage and with the description of the application module
indicating the resource as the mainly consumed resource
is selected for migration;
selecting a second virtual machine, from the plurality of
virtual machines, that has the indicated resource avail-

15

20

25

30

18

able, wherein the second virtual machine is selected
using the description of the selected application module;

migrating the selected application module to a second
application of the selected second virtual machine from
the plurality of virtual machines, wherein the applica-
tion and the second application are related applications;
and

creating a first communication module and a second com-

munication module on the application of the first virtual
machine and the second application of the second virtual
machine, respectively, so that the plurality of modules,
including the migrated modules executing within the
application and the second application utilizes the first
and second communication modules to communicate.

10. The computer program product of claim 9, wherein the
usage of the resources is represented by a utilization rate
thereof, and the predetermined state is a state that indicates
the utilization rate of the resources exceeds a utilization rate
threshold.

11. The computer program product of claim 9, wherein the
second virtual machine having the indicated resources avail-
able is a virtual machine having the most indicated resources
available, which is selected from a plurality of virtual
machines.

12. The computer program product of claim 9, wherein the
second virtual machine having the indicated resources avail-
able is a virtual machine having the indicated resources avail-
able, which is generated in response to the an event that the
resource usage by any of the plurality of application modules
reaches a predetermined state.

#* #* #* #* #*

